quinta-feira, 2 de julho de 2015

vacuum of space



Nassim Haramein has calculated a geometric solution for the gravitational field. In his latest paper "Quantum Gravity and the Holographic Mass" he describes gravity in a classical algebraic way by calculating the density of the space both within and on the outside of the event horizon of a proton.

The seemingly "empty" vacuum of space is actually a nearly infinitely dense super-fluid medium made of tiny tiny tiny little frothing bubbles of energy. Sometimes called the "quantum foam", each of these miniscule vibrations represents a spherical wave form, or quanta, that is the diameter of the smallest possible measurable distance, the Planck length.

Haramein calls these tiny spherical information bits Planck spherical units or PSUs. The PSUs on the interior of the proton's event horizon pack together in a perfectly space-filling overlapping "3D" Flower of Life structure with each sphere's center being connected by a tetrahedral lattice geometry. The PSUs within the proton volume holographically project on the proton surface event horizon as "flat" equatorial circles in a "2D" flower of life tiling pattern.

In this image, the first equation describes the ratio between the proton surface area and the surface Planck circles showing that the number of equatorial circles on the Proton surface equals 10↑40 (10 to the 40 or 1000000000000000000000000000000000000000 Planck length diameter circles)

The second equation shows the number of Planck spherical units contained within the proton, which is 10↑60. In the third equation, the external surface horizon is divided by the internal volume and then multiplied by the Planck mass to give the total value of the proton mass. With a simple classical geometric calculation, Haramein obtains the mass of the proton according to the standard model, as measured from the outside, in the laboratory: 10↑-24 gm.

Haramein then calculates the external Planck circles divided by the internal Planck spheres to obtain the gravitational mass of the proton, which equals 10↑14 which is the exact amount of mass needed for the proton to obey what is called the the Schwarzschild condition of a black hole.

Protons are quantum scale black holes.
Gravity is a ratio of volume to surface area.

Sem comentários:

Enviar um comentário